support hotline 021-65210156
Login|Registered
Home
Public class
Internal training
Consulting
Expert
Knowledge
service
About Us

《DAMA国际数据管理专业人士CDMP—A基础认证》

《DAMA国际数据管理专业人士CDMP—A基础认证》

Start time:2023 Course duration: 18
Lecturer:王老师等 Course price:¥4800
Days:3
Course location:北京、成都
Professional Classification:专业认证类、行业培训类、行业培训类:电商、行业培训类:IT行业、行业培训类:电信通讯
Category:
Job classification:
Keyword:DAMA,国际数据管理,专业人士CDMP—A基础认证
Share to:

Course plan

City Days Price January February March April May June July August September October November December
北京 3 480017-19
成都 3 480024-26

Background and goals

课程背景


本课程为《DAMA-DMBOK数据管理知识体系指南》,全面深入讲解了数据管理知识体系的专业基础理论。课程中每一个知识点都由老师结合企业数据管理最佳实践经验,精心打造而成,力求让学习者全面的掌握数据管理全面知识,是企业数字化转型下培养和提升数据团队能力,打造企业“CDO首席数据官”为核心团队的必修基础课程,是帮助数据管理从业人士,通过学习数据管理基础理论,借鉴行业最佳实践,提升数据管理专业能力。


课程收益:


通过学习本课程,您将获得如下收益:

掌握数据管理知识体系的整体框架及各领域知识内容;  

对关键数据管理各领域中的重点、难点及实践获得理解;  

系统化、体系化、结构化的数据管理问题辨析、思考和分析能力,及数据管理解决方案设计、执行能力。


课程特色:


1.理论与实践相结合、案例分析与理论穿插进行;

2.专家精彩内容解析、学员专题讨论、分组研究;

3.通过全面知识理解、专题技能掌握和安全实践增强的授课方式。

Suitable people overview

main content

课程大纲:


第一章 数据管理

掌握数据、数据与信息、数据作为组织资产、数据管理原则、数据管理挑战、数据战略基本概念;掌握数据管理框架基本内容包括:战略模型、阿姆斯特丹模型、DAMA-DMBOK框架、DMBOK金字塔。

1.1 简介

1.2 什么是数据?

1.3 数据与信息

1.4 数据作为组织资产

1.5 数据管理原则

1.6 数据管理面临的挑战

1.7 数据战略

1.8 数据管理框架

1.9 DAMA与DMBOK

1.10总结


第二章 数据道德

了解数据道德、数据隐私背后的原则、数字化环境下的道德、不道德的数据处理和风险实践、建立数据道德文化、数据道德与数据治理。

2.1 简介

2.2 业务驱动因素

2.3 什么是数据道德

2.4 数据隐私背后的原则

2.5 数字化环境下的道德

2.6 不道德的数据处理和风险实践

2.7 建立数据道德文化

2.8 数据道德与数据治理

2.9 总结


第三章 数据治理

掌握数据治理指导原则、数据治理关键驱动因素、数据治理的主要组成内容、数据治理关键指标、数据治理关键输入和输出、数据治理的主要工具、数据治理应用中的策略、数据治理评价理论、数据治理最佳实践

3.1 简介

3.2 数据治理基本活动

3.3 数据治理工具和技术

3.4 数据治理实施指南

3.5 数据治理关键指标

3.6 数据治理最佳实践

3.7 总结


第四章 数据架构

掌握数据架构指导原则、数据架构关键驱动因素、数据架构的主要组成内容、数据架构关键指标、数据架构关键输入和输出、数据架构的主要工具、数据架构应用中的策略、数据架构评价理论、数据架构最佳实践。

4.1 简介

4.2 数据架构基本活动

4.3 数据架构工具和技术

4.4 数据架构实施指南

4.5 数据架构关键指标

4.6 数据架构最佳实践

4.7 总结


第五章 数据建模与设计

掌握数据模型指导原则、数据模型关键驱动因素、数据模型的主要组成内容、数据模型关键指标、数据模型关键输入和输出、数据建模的主要工具、数据模型应用中的策略、数据建模评价理论、数据建模最佳实践。

5.1 简介

5.2 数据模型基本活动

5.3 数据建模工具和技术

5.4 数据建模实施指南

5.5 数据模型关键指标

5.6 数据建模最佳实践

5.7 总结


第六章 数据存储与操作

掌握数据数据库设计指导原则、数据存储与操作驱动因素、数据库的主要组成内容、数据库管理关键指标、数据库管理关键输入和输出、数据库管理的主要工具、数据库设计应用中的策略、数据存储与操作评价理论、数据库管理最佳实践。

6.1 简介

6.2 数据库管理基本活动

6.3 数据库工具和技术

6.4 数据库实施指南

6.5 数据库管理关键指标

6.6 数据库管理最佳实践

6.7 总结


第七章 数据安全

掌握数据安全指导原则、数据安全关键驱动因素、数据安全的主要组成内容、数据安全关键指标、数据安全关键输入和输出、数据安全的主要工具、数据安全技术、数据安全实施指南、数据治理最佳实践。

7.1 简介

7.2 数据安全基本活动

7.3 数据安全工具和技术

7.4 数据安全实施指南

7.5 数据安全关键指标

7.6 数据安全管理评价

7.7 数据安全最佳实践

7.8 总结


第八章 数据集成与互操作性

掌握数据集成与互操作性指导原则、数据集成与互操作性关键驱动因素、数据集成与互操作性的主要组成内容、数据集成与互操作性关键指标、数据集成与互操作性关键输入和输出、数据集成与互操作性的主要工具、数据集成与互操作性实施指南、数据集成与互操作性评价理论、数据集成与互操作性最佳实践。

8.1 简介

8.2 数据成与互操作性基本活动

8.3 数据集成与互操作性工具和技术

8.4 数据集成与互操作性实施指南

8.5 数据集成与互操作性关键指标

8.6 数据集成与互操作性最佳实践

8.7 总结


第九章 文档和内容管理

掌握内容管理指导原则、内容管理关键驱动因素、内容管理的主要组成内容、内容管理关键指标、内容管理关键输入和输出、内容管理的主要工具、内容管理实施指南、内容管理评价理论、内容管理最佳实践。

9.1 简介

9.2 文档和内容管理基本活动

9.3 内容管理工具和技术

9.4 内容管理实施指南

9.5 内容管理关键指标

9.6 内容管理最佳实践

9.7 总结


第十章 参考数据和主数据

掌握参考数据和主数据指导原则、参考数据和主数据关键驱动因素、参考数据和主数据主要组成内容、参考数据和主数据关键指标、参考数据和主数据关键输入和输出、参考数据和主数据的主要工具、参考数据和主数据实施指南、参考数据和主数据评价理论、参考数据和主数据最佳实践。

10.1 简介

10.2 参考数据和主数据基本活动

10.3 参考数据和主数据工具和技术

10.4 参考数据和主数据实施指南

10.5 参考数据和主数据关键指标

10.6 参考数据和主数据最佳实践

10.7 总结


第十一章 数据仓库与商务智能

掌握数据数据仓库与商务智能指导原则、数据仓库与商务智能关键驱动因素、数据仓库与商务智能的主要组成内容、数据仓库与商务智能关键指标、数据仓库与商务智能关键输入和输出、数据仓库与商务智能的主要工具、数据仓库与商务智能应用中的策略、数据仓库与商务智能评价理论、数据仓库与商务最佳实践。

11.1 简介

11.2 数据仓库与商务智能基本活动

11.3 数据仓库与商务智能工具和技术

11.4 数据仓库与商务智能实施指南

11.5 数据仓库与商务智能关键指标

11.6 数据仓库与商务智能最佳实践

11.7 总结


第十二章 元数据管理

掌握元数据指导原则、元数据关键驱动因素、元数据的主要组成内容、元数据关键指标、元数据关键输入和输出、元数据的主要工具、元数据应用中的策略、元数据评价理论、元数据最佳实践。

12.1 简介

12.2 元数据管理基本活动

12.3 元数据管理工具和技术

12.4 元数据实施指南

12.5 元数据管理关键指标

12.6 元数据最佳实践

12.7 总结


第十三章 数据质量

掌握数据质量指导原则、数据质量关键驱动因素、数据质量的主要组成内容、数据质量关键指标、数据质量关键输入和输出、数据质量的主要工具、数据质量应用中的策略、数据质量评价理论、数据质量最佳实践。

13.1 简介

13.2 数据质量基本活动

13.3 数据质量工具和技术

13.4 数据质量实施指南

13.5 数据质量关键指标

13.6 数据质量最佳实践

13.7 总结


第十四章 大数据与数据科学

掌握大数据指导原则、大数据与数据科学关键驱动因素、大数据与数据科学的主要组成内容、大数据关键指标、大数据关键输入和输出、大数据的主要工具、大数据与数据科学应用中的策略、大数据评价理论、大数据与数据科学最佳实践。

14.1 简介

14.2 大数据与数据科学基本活动

14.3 大数据与数据科学工具和技术

14.4 大数据与数据科学实施指南

14.5 大数据与数据科学关键指标

14.6 大数据与数据科学最佳实践

14.7 总结


第十五章 数据管理能力成熟度

掌握数据管理能力指导原则、数据管理能力成熟度评估关键驱动因素、数据管理能力成熟度的主要组成内容、数据管理能力成熟度关键指标、数据管理能力成熟度关键输入和输出、数据管理能力成熟度的主要工具、数据管理能力成熟度应用策略、数据管理能力成熟度评价理论、数据管理能力成熟度最佳实践。

15.1 简介

15.2 数据管理能力成熟度基本活动

15.3 数据管理能力成熟度工具和技术

15.4 数据管理能力成熟度实施指南

15.5 数据管理能力成熟度关键指标

15.6 数据管理能力成熟度最佳实践

15.7 总结


第十六章 数据管理组织及角色

掌握数据管理组织模式、数据管理成功关键要素、建立数据管理组织、数据管理组织与其他组织间关系、数据管理组织中的角色、数据管理组织最佳实践。

16.1 简介

16.2 数据管理组织模式

16.3 数据管理成功关键要素

16.4 建立数据管理组织

16.5 数据管理组织与其他组织间关系

16.6 数据管理组织中的角色

16.7 总结


第十七章 数字化转型下组织变革管理

掌握数字化转型下组织变革管理原则、组织变革管理的八个误区、组织变革管理的八个阶段、组织变革的可持续发展、组织持续获得数据管理价值。

17.1 简介

17.2 数字化转型下的组织变革管理原则

17.3 数字化转型下组织变革管理的八个误区

17.4 数字化转型下组织变革管理的八个阶段

17.5 数字化转型下组织变革的可持续发展

17.6 数字化转型下组织持续获得数据管理价值

17.7 数字化转型组织数据管理文化最佳实践

17.8 总结

Instructor

王老师


(TOGAF9.2 鉴定级、CDMP、PMP、高级信息系统项目管理师、ITIL V3)数据治理及数据标准化专家,信息工程硕士。参与过大量关于数据治理、数据能力成熟度评估、数据架构、企业级数据模型、数据标准化和数据质量提升项目,长期致力于数据治理、数据架构及数据标准化方面的研究和实践.


常老师


北京大学会计学博士,ThoughtWorks中国首席金融数据科学家。具有18年数据规划、数据治理、智能算法在金融和电信行业的落地经验。协助企业逐步积累数据资产,运用数据智能工具优化业务流程,取得数字化竞争优势。代表客户有人民银行、国家开发银行、中国建设银行、中国移动、中国银行、中国民生银行。 在加入ThoughtWorks之前,曾在毕马威大数据部任总监、在中银消费金融数据部任高级经理、在百度大数据任数据产品经理。兼任北京语言大学金融硕校外导师,同时担任的社会角色和荣誉有中国大数据产业生态联盟专家委员会委员,CDA数据分析研究院名誉院长,腾讯云最有价值专家(TVP),建设银行反洗钱和数据资产管理资深外部专家。著有《金融数据科学手册》系列丛书、《Python数据科学:技术详解与商业实践》、《用商业案例学R语言数据挖掘》、《胸有成竹:数据分析的SASEG进阶》等多本著作。


蔡老师


某石化集团数据标准化项目大项目经理,某软件公司高级项目总监,数据业务部负责人。同时也是中国电子工业标准化技术协会会员、企业信息标准化委员会常委委员、eCl@ss协会会员(国际产品分类标准化组织)、北京市大数据及其应用专家委员会专家,中国数据标准化及治理大会组委会评为“ 中国数据标准化及治理专家” 。工信部认证的大数据处理高级工程师、工商管理硕士,具有有20年的特大型集团企业IT咨询服务和数据治理行业工作经验,前10年主要从事物资采购变革与管理、PLM、ERP、MES等领域咨询服务。近10年专注主数据标准化及数据中心、数据架构、企业架构、智能工厂等咨询和技术管理工作。


郑博士


DAMA中国理事会员,工学博士学位, 清华大学未来科技EMBA 在读,2012年毕业回国创办恩核(北京)信息技术有限公司。致力于数据架构、数据建模及数据治理技术方面的研究与实践,曾出版《海量数据库解决方案1》,《区块链开发与实例》,后者被清华计算机学院列为指定教材,参与翻译《数据管理知识体系-DMBOK2.0》,组织翻译《区块链重构游戏规则》

Student feedback

Related course recommendation

    
    Hello! Welcome to Fu Rui! What can I do for help